Eigenvalues Estimates for the Dirac Operator in Terms of Codazzi Tensors
نویسنده
چکیده
We prove a lower bound for the first eigenvalue of the Dirac operator on a compact Riemannian spin manifold depending on the scalar curvature as well as a chosen Codazzi tensor. The inequality generalizes the classical estimate from [2].
منابع مشابه
Dirac eigenvalues estimates in terms of symmetric tensors
We review some recent results concerning lower eigenvalues estimates for the Dirac operator [6, 7]. We show that Friedrich’s inequality can be improved via certain well-chosen symmetric tensors and provide an application to Sasakian spin manifolds.
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملOn Eigenvalue Estimates for the Submanifold Dirac Operator
We give lower bounds for the eigenvalues of the submanifold Dirac operator in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude by translating these results in terms of intrinsic twisted Dirac operators.
متن کاملGeneralized Cylinders in Semi-riemannian and Spin Geometry
We use a construction which we call generalized cylinders to give a new proof of the fundamental theorem of hypersurface theory. It has the advantage of being very simple and the result directly extends to semi-Riemannian manifolds and to embeddings into spaces of constant curvature. We also give a new way to identify spinors for different metrics and to derive the variation formula for the Dir...
متن کاملA brief note on the spectrum of the basic Dirac operator
In this paper, we prove the invariance of the spectrum of the basic Dirac operator defined on a Riemannian foliation (M,F) with respect to a change of bundle-like metric. We then establish new estimates for its eigenvalues on spin flows in terms of the O’Neill tensor and the first eigenvalue of the Dirac operator on M . We discuss examples and also define a new version of the basic Laplacian wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007